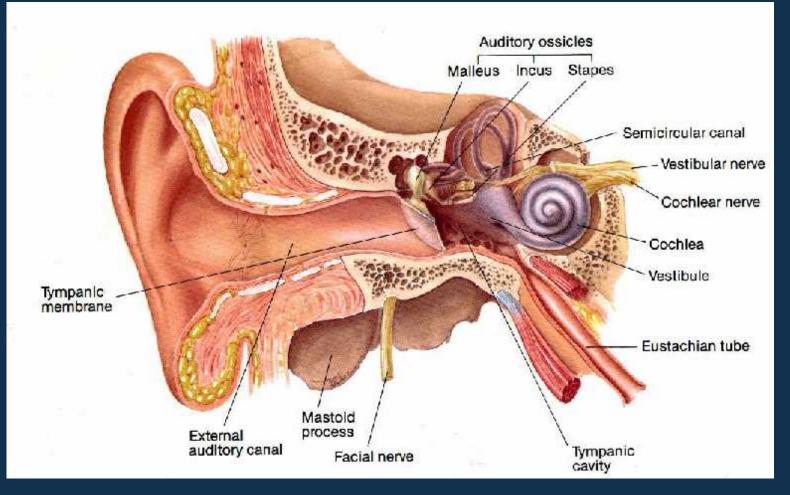
Hearing Loss and Usher Syndrome

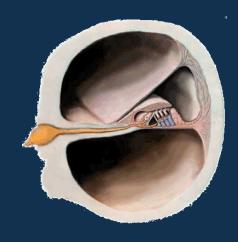
Kathleen Sie, MD

Professor, Otolaryngology Head and Neck Surgery University of Washington Director, Childhood Communication Center Seattle Children's Hospital

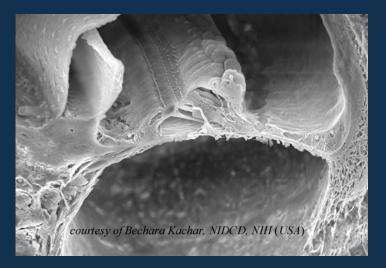
Usher Family Conference Seattle, WA July 2016



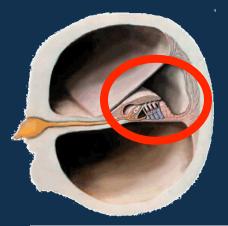
Overview

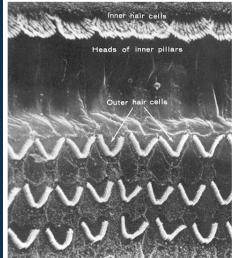

- Childhood hearing loss
 - Review of auditory system
 - How we measure hearing
 - Medical evaluation
- Usher Syndrome and hearing loss
 - Classification
 - Genetic causes
 - Treatment

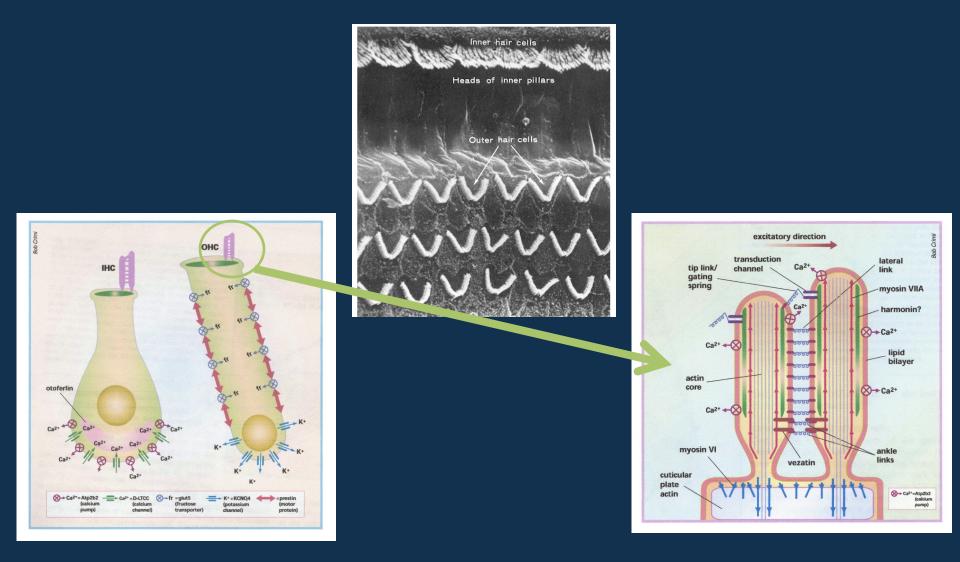
Ears and Hearing 101



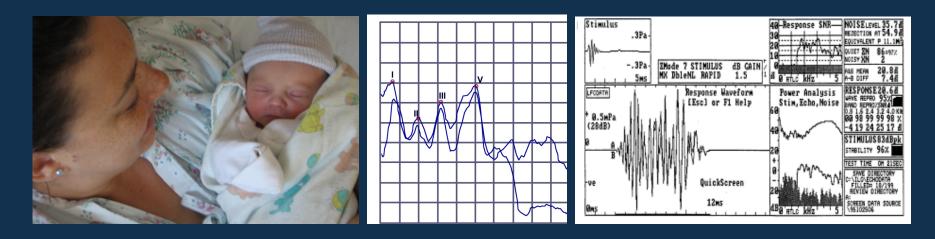








How the ear functions – hair cells

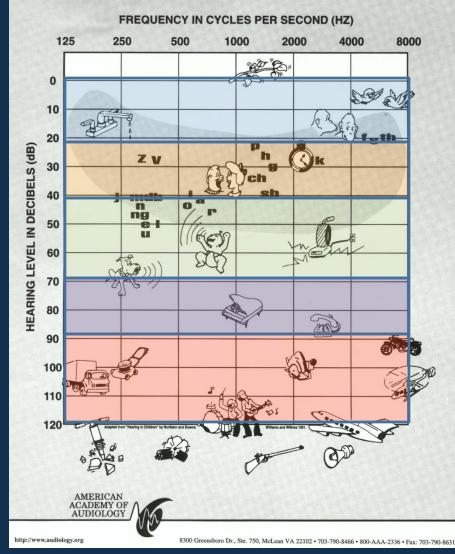

Milestones in diagnosis of childhood hearing loss

- 1960's Auditory brainstem response testing
- 1980s Automated auditory testing

 ABR and EOAE
- 1999 Walsh Bill
- 2000's Early Hearing loss Detection and Intervention (EHDI)
 - Screening by 1 month
 - Diagnosis by 3 months
 - Intervention by 6 months

How we measure hearing

Type of test	Requirements	Advantages	Disadvantages
Physiologic tests ABR, BSER, BAER EOAE	Sleep or quiet	-Ear specific responses -Does not require patient cooperation -Correlates well with behavioral responses	-Requires sedation over 6 months of age -Physiologic response



How we measure hearing

Type of test	Requirements	Advantages	Disadvantages
Physiologic tests			
ABR, BSER, BAER EOAE	Sleep or quiet	-Ear specific responses -Does not require patient cooperation -Correlates well with behavioral responses	-Requires sedation over 6 months of age -physiologic response
Behavioral			
 VRA-visual reinforced CPA- conditioned play CA- conventional 	>6 months old Cooperative	Gold standard for assessment of hearing	Patient must be developmentally ready

Audiograms 101

AUDIOGRAM OF FAMILIAR SOUNDS

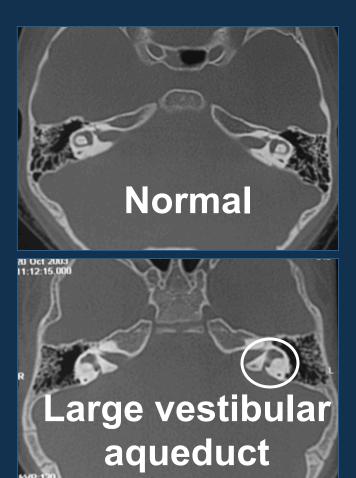
NORMAL MILD MODERATE SEVERE PROFOUND

Medical evaluation of childhood hearing loss

- History
- Physical examination
- Characterization of hearing loss
- Imaging studies

 CT and/or MRI scans
- Tests for causes of hearing loss
 - -CMV testing
 - -Genetic tests

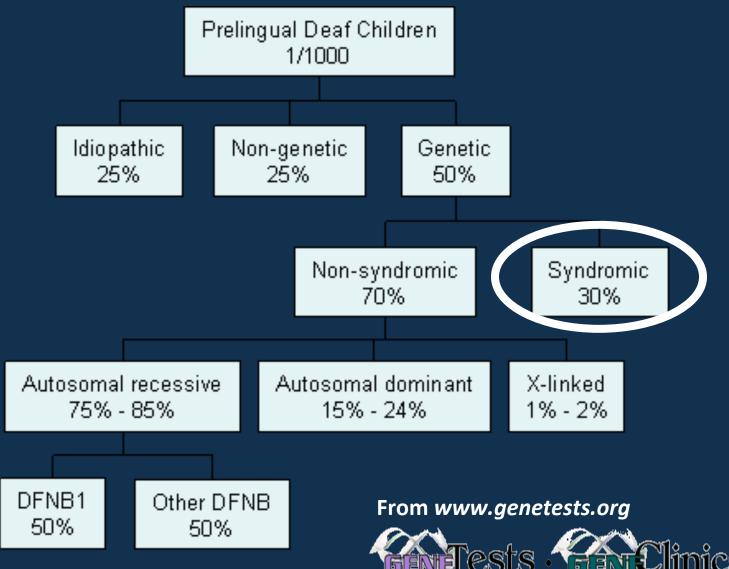
Medical evaluation of childhood hearing loss


- Tests to look for associated problems

 <u>– Balance testing</u>
 - Ophthalmologic evaluation
 - -Electrocardiogram
 - -Renal ultrasound
 - -Thyroid function studies
 - -Electroretinogram
 - -Others

CT scans

Evaluation of children with hearing loss


- CMV testing
 - Infants
 - Need to get specimen from first 3 wks of life

- Genetic testing
 - Single mutation analysis
 - Next Gen Sequencing

Management of children with hearing loss

Exposure to language Early intervention Amplification Hearing aids **Cochlear implants** FM systems School accommodations

Childhood Hearing Loss

Hearing loss and Usher syndrome

CHILDHOOD HEARING LOSS IN USA

- 1-3/1000 newborns have severe to profound HL

- 2-5/1000 newborns have milder degrees of HL

Over 95% of children with hearing loss have parents with normal hearing.

Hearing loss and Usher syndrome

USHER SYNDROME ACCOUNTS FOR

- About 1:25,000 in USA

- 3-6% of children with hearing loss in USA*

- 50% of people with deaf-blindness in USA

 Most common recessively inherited form of syndromic hearing loss

Diagnosis of Usher syndrome

- Family history
- Congenital bilateral profound hearing loss and bilateral vestibular areflexia (US 1) *
- Retinitis pigmentosa **
- Clinical presentation

Diagnosis of Usher Syndrome

- Genetic testing (11 loci on 9 different genes)
 - -Otochip
 - -Otoscope
- Other tests: vestibular testing and ERG

Hearing loss and Usher Syndrome

US Type	Hearing	Balance	Vision	Genes*
Type I B,C,D,E,F,G,H,J ,K	Congenital Bilateral Profound	Congenital Bilateral Areflexia	RP Progressive loss	MYO7A, CDH23, PCDH15, USH1C, USH1G
Type II	Congenital Bilateral Moderate to severe	Normal	RP Adolescent to adult onset	USH2A, GPR98, DFNB31
Type III	Postlingual Bilateral Progressive	Variable Progressive	RP Late onset	CLRN1

Hearing loss and Usher Syndrome

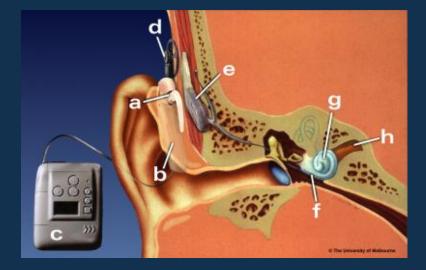
US Type	Hearing	Balance	Vision	Genes*
Type I B,C,D,E,F,G,H,J ,K	Congenital Bilateral Profound	Congenital Bilateral Areflexia	RP Progressive loss	MYO7A, CDH23, PCDH15, USH1C, USH1G
Type II	Congenital Bilateral Moderate to severe	Normal	RP Adolescent to adult onset	USH2A, GPR98, DFNB31
Type III	Postlingual Bilateral Progressive	Variable Progressive	RP Late onset	CLRN1

Hearing loss and Usher Syndrome

US Type	Hearing	Balance	Vision	Genes*
Type I B,C,D,E,F,G,H,J ,K	Congenital Bilateral Profound	Congenital Bilateral Areflexia	RP Progressive loss	MYO7A, CDH23, PCDH15, USH1C, USH1G
Type II	Congenital Bilateral Moderate to severe	Normal	RP Adolescent to adult onset	USH2A, GPR98, DFNB31
Type III	Postlingual Bilateral Progressive	Variable Progressive	RP Late onset	CLRN1

* All these genes have also been described with nonsyndromic HL

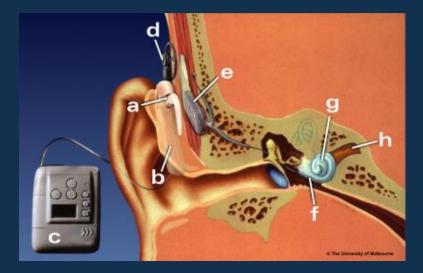
The John and Marcia Carver Nonprofit Genetic Testing Laboratory, U of Iowa

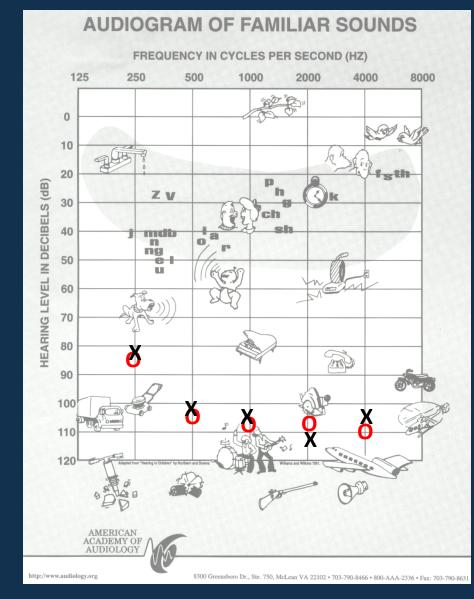

Disorder	Mode of Inheritance	Gene(s)	Cost	Estimated Turnaround	Methodology	CPT Codes
Usher Syndrome	Autosomal Recessive	CDH23, CLRN1, MYO7A, PCDH15, USH1C, USH1G & USH2A	First Tier Testing \$575	8-10 weeks	Allele-Specific Testing Followed by Conventional Sequencing	81400, 81407, 81408, 81479
			Second Allele Testing \$575-\$1,626	10-12 weeks	Conventional Sequencing	81400, 81407, 81408, 81479
		ABHD12, CDH23, CIB2, CLRN1, DFNB31, GPR98, HARS, MYO7A, PCDH15, USH1C, USH1G & USH2A	Exome Testing \$2200	14-16 weeks	Allele-Specific Testing Followed by Conventional Sequencing and Next Generation Sequencing	81400, 81407, 81408, 81479

Treatment for Usher syndrome

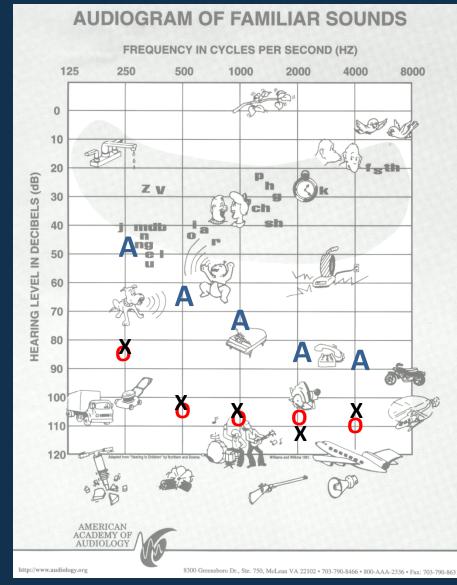
- EXPOSURE TO LANGUAGE
- Early intervention
- Support for vision impairment
- Psychosocial support
- Exposure to spoken language
 - Amplification
 - Cochlear implantation

Cochlear implantation


 Indications/guidelines -No significant speech benefit from appropriately fit hearing aids -12 months of age -Absence of medical contraindications


Cochlear implantation

- Emerging trends in CI
 - -Earlier age
 - Lesser degrees
 of HL
 - Hearing
 preservation
 surgery



Hearing loss and US1

PROFOUND


Aided hearing and US1

SEVERE PROFOUND

CI responses and US 1

AUDIOGRAM OF FAMILIAR SOUNDS

NORMAL MILD

MODERATE

SEVERE PROFOUND

Usher syndrome and hearing loss

• Genetic therapies for US hearing loss are not yet available for humans.

 Understanding the molecular mechanisms of hearing loss will pave the way for biologic interventions.

On the horizon...

- Usher Type 3
 - Mutation affects production of clarin-1
 - Abnormal protein does not reach cell membrane
 - Abnormal protein degraded
 - Research group aimed to stabilize clarin-1
 Compound BF844

Alagramam, et al. A small molecule mitigates hearing loss in a mouse model of Usher 3. Nat Chem Biol 2016: 12 (6):444-451.

Summary

- Identification of Usher Syndrome in children with hearing loss:
 - Diagnosis is based upon clinical findings.
 - Genetic testing has an important role.
 - Work with hearing health care team.
 - Early diagnosis will be important.
- Treatment options will improve with our understanding of molecular mechanisms of hearing loss.

Questions?

kathysie@uw.edu