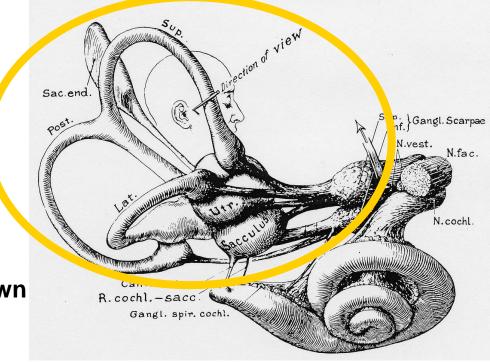
Vestibular Function and Usher Syndrome

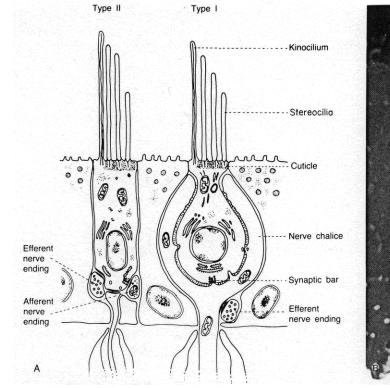
James O. Phillips, Ph.D.

Seattle Children's Hospital Division of Ophthalmology CIBR

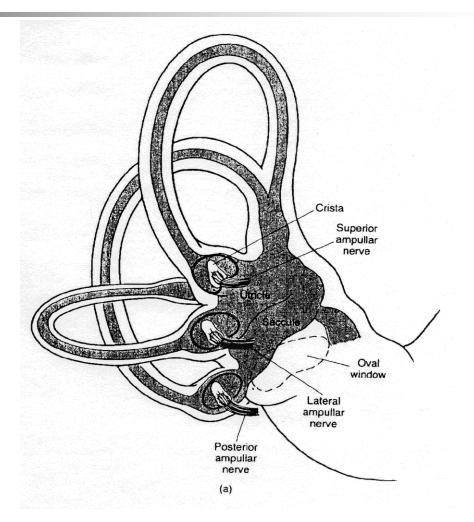

University of Washington Dept. of Otolaryngology / HNS CHDD, VMBHRC

What is the vestibular system?

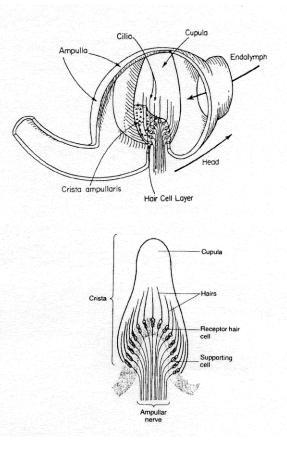
- The vestibular system includes the structures in the inner ear that contribute to balance and orientation.
- It includes the nerves that relay balance and orientation information from the inner ear to the brain.
- It includes the neurons in the brain that make sense of that information, by combining information from a variety of sources.
 - different parts of each inner ear
 - from both ears
 - from the visual system
 - from muscles and joints


What parts of the inner ear are parts of the vestibular system?

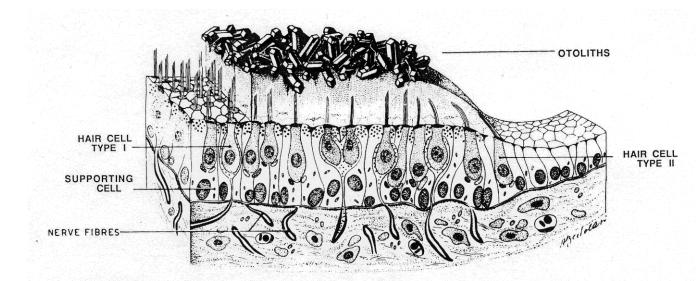
- semicircular canals
 - turning
- otolith organs
 - utricle
 - saccule
 - Front-back, right-left, up-down
 - Tilt
- vestibular ganglia


It all starts with hair cells!

- hair cells
 - Type I and Type II
 - shape
 - innervation
 - Cilia (apical surface)
 - kinocilium
 - stereocilia
 - hairs
 - polarized
 - Iocation of kinocilium
 - size of hairs
 - toward kinocilium
 - depolarization
 - excitatory transmitter release (glutamate)
 - excitation
 - away from kinocilium
 - hyperpolarization


What are the semicircular canals?

- 3 canals
- orthogonal
 - fluid filled
- ampulla
 - location of hair cells
 - like those in the cochlea
 - neural transduction
 - convert movement into neural signals


How do the semicircular canals work?

- When you turn your head fluid moves in the semicircular canals.
- Each ampulla contains a cupula, which billows when the fluid moves, which in turn bends the hairs of the hair cells.
 - gelatinous tongue
 - embedded hair cells
 - sense rotational acceleration

How do the otolith organs work?

- The otolith organs contain a gelatinous cap (otolithic membrane) and otoliths (otoconia, calcium carbonate crystals). They also contain hair cells.
- When we slide or tilt, the gelatinous cap deforms, and the hairs of the hair cells bend.
 - shear
 - sense tilt and linear acceleration

What happens when the inner ear vestibular system fails unilaterally?

One ear stops working

- Vertigo sense of whirling or spinning
 - tends to be short lived
- Nausea
 - natural response to conflicting sensory input
- Fatigue
- Disorientation
 - swimmy headed feeling
 - varies with context
- Anxiety
 - not knowing when you will be disoriented
 - knowing that some situations are challenging
- Cognitive impairment
- Postural and gait instability

What happens when the inner ear vestibular system fails bilaterally?

Both ears fail to work.

- No Vertigo
- Nausea and fatigue
 - conflicting sensory input is still present
- Significant Disorientation
 - swimmy headed feeling
- Anxiety
- Cognitive impairment
- Oscillopsia
 - Failure to stabilize your eyes when you turn your head
 - The visual world moves when you move
 - Reduces your vision
- Postural and Gait Instability

Is there compensation for inner ear vestibular loss?

- YES
- Over time we can compensate well for vestibular loss
 - Especially true of children
 - Our brains are designed to adjust for loss of input.
- Compensation is dependent on learning:
 - not to misinterpret sensory cues from a non working vestibular system
 - to use contextually appropriate cues
 - to develop a general strategy that is adaptive over a range of situations
 - to substitute useful information from other sensory systems
 - SOMATOSENSORY SYSTEM
 - VISUAL SYSTEM

- Usher syndrome (USH) is characterized by varying degrees of:
 - congenital hearing loss
 - retinitis pigmentosa
 - vestibular dysfunction
- 12 loci, 9 causative genes, 1 modifier gene
- 3 clinical subtypes of USH
 - USH1, USH2, USH3

- USH1 Usher Syndrome Type 1
 - 30-40% of all cases
 - Classic USH1 vestibular phenotype
 - Severe vestibular dysfunction
 - Bilateral areflexia within the first year of life
 - USH1B
 - Classic phenotype, 50% of USH1
 - USH1C, CDH23, PCDH15
 - Either classic phenotype
 - Or only non-syndromic hearing loss
 - CDH23 missense mutations vs. truncating mutations

- USH2 Usher syndrome Type 2
 - Normal vestibular function
- USH3 Usher syndrome Type 3
 - 2-4% of all cases
 - Varying degrees of vestibular dysfunction
 - 45% vestibular hypofunction (Sadeghi et al)
 - 36% of the cohort that walked before 16 months showed variable dysfunction later - progressive loss

- Summary:
- Usher syndrome can produce
 - Bilateral vestibular areflexia, bilateral sensorineural hearing loss, and prepubertal vision loss
 - Bilateral vestibular areflexia, bilateral SNHL, later progressive vision loss
 - Partial vestibular loss, hearing loss, and partial vision loss
 - Progressive vestibular loss, hearing loss, progressive vision loss.

USH1 clinical presentation

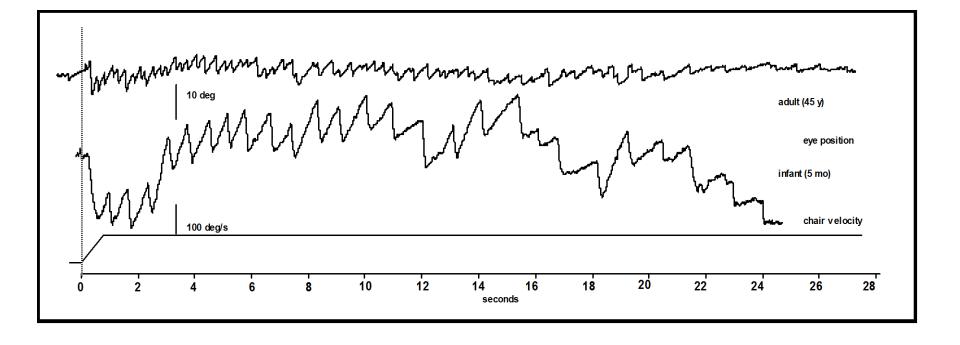
- Profound bilateral SNHL at birth
- Bilateral vestibular areflexia at birth
- Missed motor milestones
- Catch up with somatic motor function
 - Central compensation and sensory substitution
- Onset of visual loss
- Return of disequilibrium and imbalance
 - Decompensation due to loss of sensory substitution
 - Seek new strategies

Detection of vestibular loss

- Clinical tools to detect loss of vestibular function
- Important to define the amount of vestibular function
 - Early sign of classic USH1 phenotype
 - Visual loss occurs progressively and later
 - Vestibular loss is complete, bilateral, and early onset
 - Important to know if vestibular loss is
 - Present or absent
 - Bilateral or unilateral
 - Complete or partial
 - Progressive, static or fluctuating
 - Each type of loss has a different treatment strategy

Assessment of vestibular loss

- Good clinical exam
 - Uses simple tests
 - Can detect a problem
- Laboratory Examination
 - Uses complicated technology
 - Can fully define vestibular status



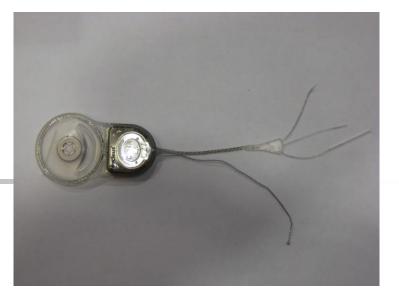
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a None decompressor are needed to see this picture.

Infant rotary chair test

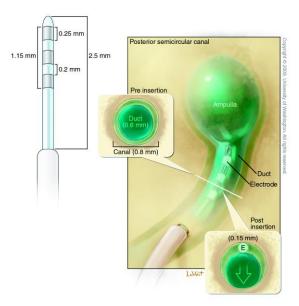
QuickTime™ and a Cinepak decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.


Platform Test Computerized Dynamic Posturography

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Treatment Options


- Current
 - Vestibular rehabilitation
 - Develop optimal substitution strategies
 - Compensate and adapt more quickly
- Future
 - Gene therapy
 - Hair cell regeneration
 - May be effective for hearing and vestibular loss

- Around the corner
 - Implantable vestibular prostheses
 - 3 groups in US (UW, Harvard, Johns Hopkins)
 - May be combined with a cochlear implant
 - First trial in adults is ongoing in Seattle, WA

Treatment options

- Provides balance information for
 - Eyes
 - Drives appropriate eye reflexes
 - Body
 - Drives appropriate postural reflexes
 - Mind
 - Drives appropriate motion perception

